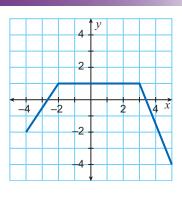
Lesson 4.3A Intervals of Increase and **Decrease and End Behavior Objectives**

- ➤ Identify intervals on which a function is increasing, decreasing, or constant.
- Identify end behavior of a function.

In mathematics, a function is identified as increasing if the values of f(x) increase as the values of x increase. A function is identified as decreasing if the values of f(x) decrease as the values of x increase. A function is identified as constant if the values of f(x) stay the same as the values of x increase.


Increasing, Decreasing, and Constant Intervals

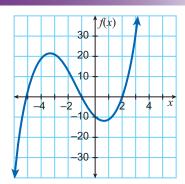
A given function can be always increasing, always decreasing, always constant, or any combination of increasing, decreasing, and constant.

A function's behavior is identified for a certain interval. An interval is any consecutive group of x-values. Interval notation is used to describe the x-values. For example, $(-\infty, 2]$ is notation for the interval negative infinity to positive 2 inclusive. A parentheses, (or), indicates the number is not part of the interval. A bracket, [or], indicates the number is included as part of the interval.

Example 1 Piecewise Function

Identify the intervals for which the function graphed is increasing, decreasing, or constant.

Solution


When the x-values are between -4 and -2, the y-values are increasing. In the interval [-4, -2), the function is increasing.

When the x-values are between -2 and 3, the y-values are always 1. In the interval (-2, 3), the function is constant.

When the x-values are between 3 and 5, the y-values are decreasing. In the interval (3, 5], the function is decreasing.

Example 2 Cubic Function

Identify the intervals for which the function $f(x) = x^3 + 4x^2 - 7x - 10$ is increasing, decreasing, or constant.

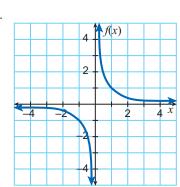
Solution

Use the maximum and minimum features on your graphing calculator to determine the *x*-values where the graph changes from increasing to decreasing and changes from decreasing to increasing.

The graph changes from increasing to decreasing at $x \approx -3.4$ and from decreasing to increasing at $x \approx 0.7$. In interval notation, the graph of f(x) is increasing from $(-\infty, -3.4)$ and from $(0.7, +\infty)$ and decreasing from (-3.4, 0.7).

End Behavior

The end behavior of a function f(x) refers to the f(x)-values of the function as x approaches positive and negative infinity. The f(x)-values of the function may get increasingly more positive, more negative, or approach a given value of f(x).


Example 3 End Behavior

Identify the end behavior of the function $f(x) = \frac{1}{x}$ as x approaches $-\infty$ and as x approaches $+\infty$.

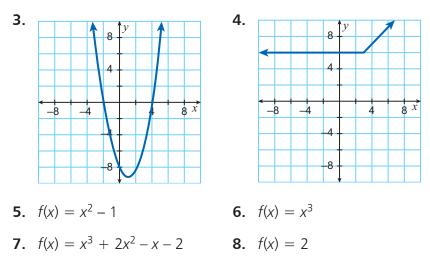
Solution

Use your graphing calculator to graph $f(x) = \frac{1}{x}$.

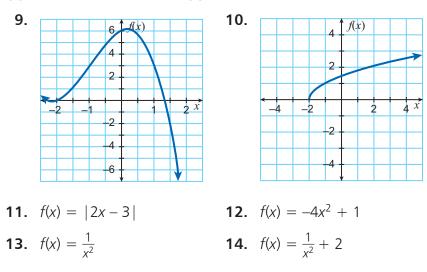
From the graph, as *x* approaches $-\infty$ the graph gets closer and closer to the *x*-axis meaning the values of *f*(*x*) approach 0. As *x* approaches $+\infty$ the graph gets closer and closer to the *x*-axis meaning the values of *f*(*x*) approach 0. In mathematical notation:

as $x \to -\infty$, $f(x) \to 0$ and as $x \to +\infty$, $f(x) \to 0$.

4.3A Intervals of Increase and Decrease and End Behavior


Lesson Assessment

Think and Discuss


- **1.** Describe what it means for a function to be increasing on a given interval.
- 2. Describe a strategy for identifying the end behavior of a function.

Practice and Problem Solving

For each function, identify the intervals where the function is increasing, decreasing, and constant. If necessary, round answers to the nearest tenth.

For each function, identify the end behavior as x approaches $-\infty$ and as x approaches $+\infty$.

