New Mexico Science Content Standards, Benchmarks, and Performance Standards <u>Publisher Alignment Analyses for Primary Tool of Instruction</u>

This correlation table/matrix is a tool to show alignment with *New Mexico's Content Standards, Benchmarks and Performance Standards* and the proposed instructional material considered for adoption. The purpose is to demonstrate how your material can contribute to student achievement as measured against these Content Standards. **Please submit this alignment analyses for each title you are submitting to the Instructional Material Bureau via e-mail to Marjorie Gillespie at <u>mgillespie@ped.state.nm.us</u> . Please do NOT send paper copies of this document.**

Title: PHYSICS IN CONTEXT (FOR PRINCIPLES OF TECHNOLOGY) ISBN: 1-57837-275-5

Physics

Strand I: Scientific Thinking and Practice Standard I: Understand the processes of scientific investigations and use inquiry and scientific ways of observing, experimenting, predicting, and validating to think critically.

Benchmark	Performance Standards	Publisher Citation		Meets Standard*	
		Introduced	Practiced	Yes	No
Use accepted scientific methods to collect, analyze, and interpret data and observations and to design and conduct scientific investigations and communicate results.	 Describe the essential components of an investigation, including appropriate methodologies, proper equipment, and safety precautions. Design and conduct scientific investigations that include: testable hypotheses controls and variables methods to collect, analyze, and interpret data results that address hypotheses being investigated 	Introduced by exploring the concepts with the students in the Lab Manual, Student Journal, Assessment CD & text	Embedded in appropriate sections of Student Text, Teachers Guide, Lab Manual, Student Journal, Assessment CD & text	V	

	 predictions based on results re-evaluation of hypotheses and additional experimentation as necessary error analysis. Use appropriate technologies to collect, analyze, and communicate scientific data (e.g., computers, calculators, balances, microscopes). 4.Convey results of investigations using scientific concepts, methodologies, and expressions, including: scientific language and symbols diagrams, charts, and other data displays mathematical expressions and processes (e.g., mean, median, slope, proportionality) clear, logical, and concise communication reasoned arguments. Understand how scientific theories are used to explain and predict natural phenomena (e.g., plate tectonics, ocean currents, structure of atom). 	Web-site. Supported by Student Text and Teacher's Guide	web-site		
Understand that scientific processes produce scientific knowledge that is continually evaluated, validated, revised, or rejected.	 Understand how scientific processes produce valid, reliable results, including: consistency of explanations with data and observations openness to peer review full disclosure and examination of assumptions testability of hypotheses repeatability of experiments and reproducibility of results. Use scientific reasoning and valid logic to recognize: faulty logic cause and effect the difference between observation and unsubstantiated inferences and conclusions 	Introduced by exploring the concepts with the students in the Lab Manual, Student Journal, Assessment CD & text Web-site. Supported by Student Text and	Embedded in appropriate sections of Student Text, Teachers Guide, Lab Manual, Student Journal, Assessment CD & text web-site	\checkmark	

	 potential bias. 3. Understand how new data and observations can result in new scientific knowledge. 4. Critically analyze an accepted explanation by reviewing current scientific knowledge. 5. Examine investigations of current interest in science (e.g., superconductivity, molecular machines, age of the universe). 6. Examine the scientific processes and logic used in investigations of past events (e.g., using data from crime scenes, fossils), investigations that can be planned in advance but are only done once (e.g., expensive or time-consuming experiments such as medical clinical trials), and investigations of phenomena that can be 	Teacher's Guide			
Use mathematical concepts, principles, and expressions to analyze data, develop models, understand patterns and relationships, evaluate findings, and draw conclusions.	 Create multiple displays of data to analyze and explain the relationships in scientific investigations. Use mathematical models to describe, explain, and predict natural phenomena. Use technologies to quantify relationships in scientific hypotheses (e.g., calculators, computer spreadsheets and databases, graphing software, simulations, modeling). Identify and apply measurement techniques and consider possible effects of measurement errors. Use mathematics to express and establish scientific relationships (e.g., scientific notation, vectors, dimensional analysis). 	Introduced by exploring the concepts with the students in the Lab Manual, Student Journal, Assessment CD & text Web-site. Supported by Student Text and Teacher's Guide	Embedded in appropriate sections of Student Text, Teachers Guide, Lab Manual, Student Journal, Assessment CD & text web-site	√	

Strand II: Content of Science

Standard I (Physical Science): Understand the structure and properties of matter, the characteristics of energy, and the interactions between matter and energy.

Benchmark	Performance Standards	Publish	er Citation	Me Stand	Meets Standard*	
		Introduced	Practiced	Yes	No	
Understand the properties,	Properties of Matter	Foundation	Student Text	\checkmark		
underlying structure, and	1. Classify matter in a variety of ways (e.g., element,	for	pp 4-76; 84-			
reactions of matter.	compound, mixture; solid, liquid, gas; acidic,	introduction	116; 122-164;			
	basic, neutral).	in each	170-224.			
	2. Identify, measure, and use a variety of physical	content	Teacher's			
	and chemical properties (e.g., electrical	element of	Guide pp. T4-			
	conductivity, density, viscosity, chemical	the Student	76; T84-116;			
	reactivity, pH, melting point).	Text,	T122-164;			
	3. Know how to use properties to separate mixtures	Teacher's	T170-224.			
	into pure substances (e.g., distillation,	Guide, Lab	Lab Manual &			
	chromatography, solubility).	manuals and	Student			
	4. Describe trends in properties (e.g., ionization	support	Journal pp. 1-			
	energy or reactivity as a function of location on	materials	1-1-36; 2-1-2-			
	the periodic table, boiling point of organic liquids	such as	34;3-1-3-34; 4-			
	as a function of molecular weight).	Assessment	1-4-38			
		CD and	Sections of			
		Web-site.	Assessment CD			
			and web-site:			

				Г
			www.learningin	
			context.com	
Understand the	Energy Transformation and Transfer	Foundation	Student Text	
transformation and	1. Identify different forms of energy, including	for	рр. 230-240;	
transmission of energy and	kinetic, gravitational (potential), chemical,	introduction	243-258; 262-	
how energy and matter	thermal, nuclear, and electromagnetic.	in each	275; 277-292;	
interact.	2. Explain how thermal energy (heat) consists of	content	298-321; 326-	
	the random motion and vibrations of atoms	element of	349; 354-380;	
	and molecules and is measured by	the Student	386-421; 426-	
	temperature.	Text,	487.	
	3. Understand that energy can change from one	Teacher's	Teacher's	
	form to another (e.g., changes in kinetic and	Guide, Lab	Guide T230-	
	potential energy in a gravitational field, heats	manuals and	240; T243-258;	
	of reaction, hydroelectric dams) and know that	support	T262-275;	
	energy is conserved in these changes.	materials	T277-292;	
	4. Understand how heat can be transferred by	such as	T298-321;	
	conduction, convection, and radiation, and	Assessment	T326-349;	
	how heat conduction differs in conductors and	CD and	T354-380;	
	insulators.	Web-site.	T386-421:	
	5. Explain how heat flows in terms of the		T426-487	
	transfer of vibrational motion of atoms and		Lab Manual &	
	molecules from hotter to colder regions		Student	
	6 Understand that the ability of energy to do		Journal nn 5-	
	something useful (work) tends to decrease		1-5-35· 6-1-6-	
	(and never increases) as energy is converted		25. 7-1-7-3. 8-	
	from one form to another		1_8_17.9_1_13.	
	Interactions of Fnergy and Matter		10_1_10_31	
	7 Understand that electromagnetic waves carry		Sections of	
	energy that can be transferred when they		Assossment CD	
	interact with matter		and web site:	
	7 Describe the observatoristics of electromegnetic		and web-site:	
	y Describe the characteristics of electromagnetic		www.ieariningin	
	waves (e.g., visible light, radio, microwave, X-		<u>context.com</u>	
	ray, ultraviolet, gamma) and other waves (e.g.,			

	 sound, seismic waves, water waves), including: origin and potential hazards of various forms of electromagnetic radiation energy of electromagnetic waves carried in discrete energy packets (photons) whose energy is inversely proportional to wavelength. 8. Know that each kind of atom or molecule can gain or lose energy only in discrete amounts. 9. Explain how wavelengths of electromagnetic radiation can be used to identify atoms, molecules, and the composition of stars. 10. Understand the concept of equilibrium (i.e., thermal, mechanical, and chemical). 		
Understand the motion of	Forces Foundation Stu	dent Text √	
objects and waves, and the	1. Know that there are four fundamental forces in for pp .	4-23; 27-43;	
forces that cause them.	nature: gravitation, electromagnetism, weak introduction 47-	/6; 84-93;	
	nuclear force, and strong nuclear force. In each 95-	103; 106-	
	2. Know that every object exerts gravitational content 116	; 122-135;	
	force on every other object, and now this force element of 138	-145; 149-	
	depends on the masses of the objects and the the Student 155	; 15/-103;	
	2 Unow that materials containing agual amounts Track aguar 105	-180; 184-	
	5. Know that materials containing equal amounts Teacher's 195	; 201-212;	
	of positive and negative charges are Guide, Lab 210	-223;	
	deficit of negative charges produces	23. T27 /3.	
	significant electrical forces	-23, 12/- 1 3, 7 76• T8/	
	4 Understand the relationship between force and such as 93.	T95_103·	
	pressure and how the pressure of a volume of Assessment T1()6-116·	
	gas depends on the temperature and the CD and T1 2	22-135:	
	amount of gas. Web-site . T1	38-145:	
	5. Explain how electric currents cause magnetism	49-155; T	
	and how changing magnetic fields produce 157	-163; T170-	

 6. Represent the magnitude and direction of forces by vector diagrams. 7. Know that when one object exerts a force on a second object, the second object exerts a force of equal magnitude and in the opposite direction on the first object (i.e., Newton's Third Law). Motion Apply Newton's Laws to describe and analyze the behavior of moving objects, including: displacement, velocity, and acceleration of a moving object 	T216-223. Lab Manual & Student Journal pp. 1- 1- 1-31; 2-1 -2- 27; 3-1-3-29; 4- 1 - 4-33. Sections of Assessment CD and web-site: <u>www.learningin</u> <u>context.com</u>	
 momentum and its conservation, the motion of an object falling under gravity, the independence of a falling object's motion on mass) circular motion and centripetal force. Describe relative motion using frames of reference. Describe wave propagation using amplitude, wavelength, frequency, and speed. Explain how the interactions of waves can result in interference, reflection, and refraction. Describe how waves are used for practical purposes (e.g., seismic data, acoustic effects, Doppler effect). 		

Strand III: Science and Society

Standard I: Understand how scientific discoveries, inventions, practices, and knowledge influence, and are influenced by, individuals and societies.

Benchmark	Performance Standards	Publisher Citation		Meets Standard*	
		Introduced	Practiced	Yes	No
Examine and analyze how	Science and Technology	Foundation	This is		
scientific discoveries and	1. Know how science enables technology but also	for	embedded and		
their applications affect the	constrains it, and recognize the difference between	introduction	intergraded in		
world, and explain how	real technology and science fiction	in each	each chapter of		
societies influence scientific	2. Understand how advances in technology enable	content	the Student		
investigations and	further advances in science (e.g., microscopes and	element of	Text, Teacher's		
applications.	cellular structure; telescopes and understanding of	the Student	Guide; Lab		
	the universe).	Text,	Manual,		
	3. Evaluate the influences of technology on society	Teacher's	Student		
	(e.g., communications, petroleum, transportation,	Guide, Lab	Journal and		
	nuclear energy, computers, medicine, genetic	manuals and	Sections of		
	engineering) including both desired and undesired	support	Assessment CD		
	effects, and including some historical examples	materials	and web-site:		
	(e.g., the wheel, the plow, the printing press, the	such as	www.learningin		
	lightning rod).	Assessment	<u>context.com</u>		
	4. Understand the scientific foundations of common	CD and			
	technologies.	Web-site.			
	Science and Society				
	5. Describe major historical changes in scientific				
	perspectives (e.g., atomic theory, germs,				
	cosmology, relativity, plate tectonics, evolution)				
	and the experimental observations that triggered				
	them.				
	6. Describe how environmental, economic, and				
	political interests impact resource management				
	and use in New Mexico.				
	Science and Individuals				

7.	Identify how science has produced knowledge		
	that is relevant to individual health and material		
	prosperity.		
8.	Understand that reasonable people may disagree		
	about some issues that are of interest to both		
	science and religion (e.g., the origin of life on		
	Earth, the cause of the Big Bang, the future of		
	Earth).		
9.	Understand that scientists have characteristics in		
	common with other individuals (e.g., employment		
	and career needs, curiosity, desire to perform		
	public service, greed, preconceptions and biases,		
	temptation to be unethical, core values including		
	honesty and openness).		
10). Know that science plays a role in many different		
	kinds of careers and activities.		

Physics in Context, Student Edition © 2005, Developed by CORD Communications, Waco, Texas Physics in Context, Teachers Edition Vol. 1-3, © 2005, Developed by CORD Communications, Waco, Texas Physics in Context, Lab Manuals & Data Systems Manual © 2005 Developed by Energy Concepts for CORD Communications Waco, Texas Physics in Context, Student Journal © 2005 Developed by Energy Concepts for CORD Communications Waco, Texas Physics in Context, Test Databank © 2005 Developed by Exam View for CORD Communications Waco, Texas Physics in Context, Web-site: WWW. Learningincontext.com 2005