Book Title: <u>PHYSICS IN CONTEXT</u> Subject/Course: <u>PHYSICS/PT 1</u>

 Publisher:
 CCI PUBLISHING
 Grade Level:
 9-12

SCIENCE AS INQUIRY

The benchmarks from this strand should be interwoven with all content – not just taught as a separate unit.

STANDARD: The students will do science by engaging impartial and full inquiries that are within their developmental capabilities.

As students in grades 9-12 extend and refine their knowledge, what they know and are able to do includes:

A. THE ABILITIES NECESSARY TO DO SCIENTIFIC INQUIRY

Benchmarks	Correlation Notations
SI-H-A1 identifying questions and concepts that guide	Embedded in Student Text,
scientific investigations;	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-A2 designing and conducting scientific	Embedded in Student Text,
investigations;	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-A3 using technology and mathematics to improve	Embedded in Student Text,
investigations and communications;	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-A4 formulating and revising scientific explanations	Embedded in Student Text,
and models using logic and evidence;	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-A5 recognizing and analyzing alternative	Embedded in Student Text,
explanations and models;	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-A6 communicating and defending a scientific	Embedded in Student Text,
argument; and	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
S1-H-A7 utilizing science safety procedures during	Embedded in Student Text,
scientific investigations.	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.

Benchmarks	Correlation Notations
SI-H-B1 communicating that scientists usually base their	Embedded in Student Text,
investigations on existing models, explanations, and theories	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-B2 communicating that scientists conduct investi-	Embedded in Student Text,
gations for a variety of reasons, such as exploration of new	Teachers Guide, Lab Manuals,
areas, discovery of new aspects of the natural world,	CD-ROM & Web:
confirmation of prior investigations, evaluation of current	www.learningincontext.com.
theories, and comparison of models and theories;	
SI-H-B3 communicating that scientists rely on technology	Embedded in Student Text,
to enhance the gathering and manipulation of data;	Teachers Guide, Lab Manuals,
	CD-ROM & Web:
	www.learningincontext.com.
SI-H-B4 analyzing a proposed explanation of scientific	Embedded in Student Text,
evidence according to the following criteria: following a	Teachers Guide, Lab Manuals,
logical structure, following rules of evidence, allowing for	CD-ROM & Web:
questions and modifications, and basing it on historical and	www.learningincontext.com.
current scientific knowledge; and	
SI-H-B5 communicating that the results of scientific inquir	Embedded in Student Text,
new knowledge, and methods emerge from different types of	Teachers Guide, Lab Manuals,
investigations and public communication among scientists.	CD-ROM & Web:
	www.learningincontext.com.

B. UNDERSTANDING SCIENTIFIC INQUIRY

PHYSICAL SCIENCE

STANDARD: Students will develop an understanding of the characteristics and interrelationships of matter and energy in the physical world.

As students in grades 9-12 extend and refine their knowledge, what they know and are able to do includes:

A. MEASUREMENT AND SYMBOLIC REPRESENTATION

Benchmarks	Correlation Notations
PS-H-A1 manipulating and analyzing quantitative data	Embedded in Student Text, Teachers
using the SI system; and	Guide, Lab Manuals, CD-ROM &
	Web: www.learningincontext.com.
PS-H-A2 understanding the language of chemistry	Embedded in Student Text, Teachers
(formulas, equations, symbols) and its relationship to	Guide, Lab Manuals, CD-ROM &
molecules, atoms, ions, and subatomic particles.	Web: www.learningincontext.com.

B. ATOMIC STRUCTURE

Benchmarks	Correlation Notations
PS-H-B1 describing the structure of the atom plus identify-	ST: 49-50, 404-407
ing and characterizing the particles that compose it	TG: corresponding ST pgs.
(including the structure and properties of isotopes);	LM: 9.13-9.30
PS-H-B2 describing the nature and importance of radio-	ST: 407-420
active isotopes and nuclear reactions (fission, fusion,	TG: corresponding ST pgs.
radioactive decay); and	LM: 9.13-9.30
PS-H-B3 understanding that an atom's electron configura-	Chemistry course material
tion, particularly that of the outermost electrons,	
determines the chemical properties of that atom.	

C. THE STRUCTURE AND PROPERTIES OF MATTER

Benchmarks	Correlation Notations
PS-H-C1 distinguishing among elements, compounds,	Chemistry course material
and/or mixtures;	
PS-H-C2 discovering the patterns of physical and	Chemistry course material
chemical properties found on the periodic table of the	
elements;	
	ST: 27-28, 47-56, 64-68, 107-108,
PS-H-C3 understanding that physical properties of sub-	152, 158-163, 200-202, 277-279,
stances reflect the nature of interactions among its particles,	355, 361-364, 386-388, 393, 398-
	400, 404-420, 468-480
	Chemistry course material
PS-H-C4 separating mixtures based upon the physical properties of their components:	
properties of their components,	
PS-H-C5 understanding that chemical bonds are formed	Chemistry course material
between atoms when the outermost electrons are transferred	5
or shared to produce ionic and covalent compounds;	
DC II C(managemention of the transform of the second terms	Chemistry course material
another in chains rings and branching networks to form a	
variety of structures: and	
	ST: 27-43 64-73
PS-H-C7 using the kinetic theory to describe the behavior	TG: corresponding ST pgs
of atoms and molecules during phase changes and to	LM: 1 1-1 25
describe the behavior of matter in its different phases.	

D. CHEMICAL REACTIONS

Benchmarks	Correlation Notations
PS-H-D1 observing and describing changes in matter and citing evidence of chemical change;	Chemistry course material
PS-H-D2 comparing, contrasting, and measuring the pH of acids and bases using a variety of indicators;	Chemistry course material
PS-H-D3 writing balanced equations to represent a variety of chemical reactions (acid/base, oxidation/reduction, etc.);	Chemistry course material
PS-H-D4 analyzing the factors that affect the rate and equilibrium of a chemical reaction;	Chemistry course material
PS-H-D5 applying the law of conservation of matter to chemical reactions;	Chemistry course material
PS-H-D6 comparing and contrasting the energy changes	ST: 27-46, 230-294, 404-420
that accompany changes in matter; and	TG: corresponding ST pgs.
	LM: 1.1-1.11, 5.1-5.39, 9.1-9.30
PS-H-D7 identifying important chemical reactions that	Chemistry course material
occur in living systems, the home, industry, and the	
environment.	

E. FORCES AND MOTION

Benchmarks	Correlation Notations
PS-H-E1 recognizing the characteristics and relative	ST: 47-63, 106-117, 244-247,
strengths of the forces of nature (gravitational, electrical,	262-276, 316-323, 388-390
magnetic, nuclear);	TG: corresponding ST pgs.
	LM: 1.1-1.11, 1.17-1.29, 2.27-
	2.33, 5.19-5.32, 6.3-6.11, 6.25-
	6.29
PS-H-E2 understanding the relationship of displacement,	ST: 12-26, 122-137, 170-183,
time, rate of motion, and rate of change of motion;	326-350
representing rate and changes of motion mathematically	TG: corresponding ST pgs.
and graphically;	LM: 3.3-3.7
PS-H-E3 understanding effects of forces on changes in	ST: 1-23, 47-63, 170-179, 326-
motion as explained by Newtonian mechanics; and	346
	TG: corresponding ST pgs.
	LM: 1.1-1.17, 4.1-4.8, 7.1-7.11
PS-H-E4 illustrating how frame of reference affects our	N/A
ability to judge motion.	

F. ENERGY

Benchmarks	Correlation Notations
PS-H-F1 describing and representing relationships	ST: 82-118, 230-253, 258-261,
among energy, work, power, and efficiency; and	298-315
	TG: corresponding ST pgs.
	LM: 2.27-2.33, 5.11-5.16, 5.19-
	5.32, 6.3-6.10, 2.1-2.26, 6.1-6.30
PS-H-F2 applying the universal law of conservation of	ST: 230-294, 326-353
matter, energy, and momentum, and recognizing their	TG: corresponding ST pgs.
implications.	LM: 5.3-5.10, 7.1-7.11

G. INTERACTIONS OF ENERGY AND MATTER

Benchmarks	Correlation Notations
PS-H-G1 giving examples of the transport of energy	ST: 352-382
through wave action;	TG: corresponding ST pgs.
	LM: 8.1-8.28
PS-H-G2 analyzing the relationship and interaction of	ST: 47-60, 82-103, 266-274, 386-
magnetic and electrical fields and the forces they produce;	388
	TG: corresponding ST pgs.
	LM: 1.1-1.17, 2.1-2.31, 5.1-5.32
PS-H-G3 characterizing and differentiating electro-	ST: 384-421
magnetic and mechanical waves and their effects on	TG: corresponding ST pgs.
objects as well as humans; and	LM: 9.1-9.30
PS-H-G4 explaining the possible hazards of exposure to	ST: 396, 397, 490
various forms and amounts of energy.	TG: corresponding ST pgs.