Cord Geometry, Learning in Context, 3rd edition correlation to 2010 Alabama Course of Study: Mathematics Geometry

Content Standard	Cord Geometry Lesson(s)
GEOMETRY	••••
Congruence	
Experiment with transformations in the plane.	
[G-CO1] 1. Know precise definitions of angle,	1.1, 1.2, 1.3, 1.5, 9.1, 9.3
circle, perpendicular line, parallel line, and line	
segment based on the undefined notions of point,	
line, distance along a line, and distance around a	
circular arc.	
[G-CO2] 2. Represent transformations in the	11.1, 11.2, 11.3, 11.4, 11.5,
plane using, e.g., transparencies and geometry	Math Lab 11 Activity 1
software; describe transformations as functions	
that take points in the plane as inputs and give	
other points as outputs. Compare transformations	
that preserve distance and angle to those that do	
not (e.g., translation versus horizontal stretch).	
[G-CO3] 3. Given a rectangle, parallelogram,	11.1, 11.3
trapezoid, or regular polygon, describe the	
rotations and reflections that carry it onto itself.	
[G-CO4] 4. Develop definitions of rotations,	11.1, 11.2, 11.3
reflections, and translations in terms of angles,	
circles, perpendicular lines, parallel lines, and	
line segments.	
[G-CO5] 5. Given a geometric figure and a	11.1, 11.2, 11.3,
rotation, reflection, or translation, draw the	Math Lab 11 Activity 1
transformed figure using, e.g., graph paper,	
tracing paper, or geometry software. Specify a	
sequence of transformations that will carry a	
given figure onto another.	
Understand congruence in terms of rigid motion	-
familiar starting point for development of concep	
[G-CO6] 6. Use geometric descriptions of rigid	11.1, 11.2, 11.3, 11.4, 11.5
motions to transform figures and to predict the	
effect of a given rigid motion on a given figure;	
given two figures, use the definition of	
congruence in terms of rigid motions to decide if	
they are congruent.	

[G-CO7] 7. Use the definition of congruence in	3.4, 3.5, 3.6
terms of rigid motions to show that two triangles	
are congruent if and only if corresponding pairs	
of sides and corresponding pairs of angles are	
congruent.	
[G-CO8] 8. Explain how the criteria for triangle	3.4, 3.5, 3.6, 3.7, 3.8
congruence, angle-side-angle (ASA), side-angle-	
side (SAS), and side-side-side (SSS), follow	
from the definition of congruence in terms of	
rigid motions.	
Prove geometric theorems. (Focus on validity of	undarlying reasoning while
using variety of ways of writing proofs.)	underlying reasoning while
[G-CO9] 9. Prove theorems about lines and	2.7, 2.8
	2.7, 2.0
angles. Theorems include vertical angles are	
congruent; when a transversal crosses parallel	
lines, alternate interior angles are congruent	
and corresponding angles are congruent; and	
points on a perpendicular bisector of a line	
segment are exactly those equidistant from the	
segment's endpoints.	
[G-CO10] 10. Prove theorems about triangles.	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
Theorems include measures of interior angles of	3.8, 4.2, 4.3
a triangle sum to 180°, base angles of isosceles	
triangles are congruent, the segment joining	
midpoints of two sides of a triangle is parallel to	
the third side and half the length, and the	
medians of a triangle meet at a point.	
[G-CO11] 11. Prove theorems about	6.4, 6.5
parallelograms. <i>Theorems include opposite sides</i>	
are congruent, opposite angles are congruent;	
the diagonals of a parallelogram bisect each	
other; and conversely, rectangles are	
parallelograms with congruent diagonals.	
Make geometric constructions. (Formalize and e	explain processes)
[G-CO12] 12. Make formal geometric	1.4, and used throughout the
constructions with a variety of tools and methods	Math Labs sections at the end of
such as compass and straightedge, string,	each chapter.
reflective devices, paper folding, and dynamic	caen enapter.
geometric software. <i>Constructions include</i>	
copying a segment; copying an angle; bisecting	
a segment; bisecting an angle; constructing	
perpendicular lines, including the perpendicular	
bisector of a line segment; and constructing a	
line parallel to a given line through a point not	
on the line.	

[G-CO13] 13. Construct an equilateral triangle, a	Covered in Common Core
square, and a regular hexagon inscribed in a	Geometry Supplement Chapter
circle.	1 Math Lab Activity 4
	1 Main Lab Activity 4
Similarity, Right Triangles, and Trigonometry Understand similarity in terms of similarity tra	nsformations
[G-SRT1a] 14. Verify experimentally the	11.7
properties of dilations given by a center and a	11.7
scale factor.	
a. A dilation takes a line not passing through the	
center of the dilation to a parallel line and leaves	
a line passing through the center unchanged.	
b. The dilation of a line segment is longer or	
shorter in the ratio given by the scale factor.	
[G-SRT2] 15. Given two figures, use the	4.2, 4.3
definition of similarity in terms of similarity	
transformations to decide if they are similar;	
explain using similarity transformations the	
meaning of similarity for triangles as the equality	
of all corresponding pairs of angles and the	
proportionality of all corresponding pairs of	
sides.	
[G-SRT3] 16. Use the properties of similarity	4.2
transformations to establish the angle-angle (AA)	
criterion for two triangles to be similar.	
Prove theorems involving similarity.	
[G-SRT4] 17. Prove theorems about triangles.	3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8
Theorems include a line parallel to one side of a	
triangle divides the other two proportionally,	
and conversely; and the Pythagorean Theorem	
proved using triangle similarity.	
[G-SRT5] 18. Use congruence and similarity	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
criteria for triangles to solve problems and to	3.8, 4.1, 4.2, 4.3, 4.4, 4.5
prove relationships in geometric figures.	
Define trigonometric ratios and solve problems	
[G-SRT6] 19. Understand that by similarity, side	4.5, 5.4, 5.5
ratios in right triangles are properties of the	
angles in the triangle leading to definitions of trigonometric ratios for acute angles.	
[G-SRT7] 20. Explain and use the relationship	5.4, 5.5 (specifically Critical
between the sine and cosine of complementary	Thinking Question on page 295)
angles.	minking Question on page 293)
[G-SRT8] 21. Use trigonometric ratios and the	5.2, 5.3, 5.4, 5.5
Pythagorean Theorem to solve right triangles in	
applied problems.	
Apply trigonometry to general triangles.	1
FF-J Bonomity J to Bonot in ManBrost	

	5.6
[G-SRT9] 22. (+) Derive the formula $A = (\frac{1}{2})ab$	5.6
sin(C) for the area of a triangle by drawing an	
auxiliary line from a vertex perpendicular to the	
opposite side.	
[G-SRT10] 23. (+) Prove the Law of Sines and	5.6 (Derivation of the Law of
the Law of Cosines and use them to solve	Sines in TE, otherwise used, but
problems.	not proven)
[G-SRT11] 24. (+) Understand and apply the	5.6
Law of Sines and the Law of Cosines to find	5.0
unknown measurements in right and non-right	
triangles (e.g., surveying problems, resultant	
forces).	
Circles	
Understand and apply theorems about circles.	Commenting Comments of Comme
[G-C1] 25. Prove that all circles are similar.	Covered in Common Core
	Geometry Supplement Chapter
	9 Math Lab Activity 4
[G-C2] 26. Identify and describe relationships	9.2, 9.3, 9.4, 9.5
among inscribed angles, radii, and chords.	
Include the relationship between central,	
inscribed, and circumscribed angles; inscribed	
angles on a diameter are right angles; the radius	
of a circle is perpendicular to the tangent where	
the radius intersects the circle.	
[G-C3] 27. Construct the inscribed and	9.3, 9.4, 9.5
circumscribed circles of a triangle, and prove	
properties of angles for a quadrilateral inscribed	
in a circle.	
[G-C4] 28. (+) Construct a tangent line from a	9.2
point outside a given circle to the circle.	
Find arc lengths and areas of sectors of circles.	(Radian introduced only as unit
of measure.)	
[G-C5] 29. Derive, using similarity, the fact that	9.3
the length of the arc intercepted by an angle is	
proportional to the radius, and define the radian	
measure of the angle as the constant of	
proportionality; derive the formula for the area of	
a sector.	
Expressing Geometric Properties With Equatio	ns
Translate between the geometric description an	d the equation for a conic
section.)	_
[G-GPE1] 30. Derive the equation of a circle of	9.1
given center and radius using the Pythagorean	
Theorem; complete the square to find the center	
and radius of a circle given by an equation.	

Use coordinates to prove simple geometric theo	rems algebraically <i>(Include</i>	
distance formula; relate to Pythagorean Theoren		
[G-GPE4] 31. Use coordinates to prove simple	7.5, 7.6, 9.1	
geometric theorems algebraically.	1.0, 1.0, 1.1	
[G-GPE5] 32. Prove the slope criteria for parallel	7.3, 7.4	
and perpendicular lines, and use them to solve	7.3, 7.4	
geometric problems (e.g., find the equation of a		
line parallel or perpendicular to a given line that		
passes through a given point).		
[G-GPE6] 33. Find the point on a directed line	1.2, 7.1	
segment between two given points that partitions	1.2, 7.1	
the segment in a given ratio.		
[G-GPE7] 34. Use coordinates to compute	7.1, 7.5	
perimeters of polygons and areas of triangles and	/.1, /.5	
rectangles, e.g., using the distance formula.		
Use coordinates to prove simple geometric theo	rems algebraically	
35. Determine areas and perimeters of regular	6.1, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6	
polygons, including inscribed or circumscribed	0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.0	
polygons, given the coordinates of vertices or		
other characteristics.		
Geometric Measurement and Dimension		
Explain volume formulas and use them to solve	nrohlems	
[G-GMD1] 36. Give an informal argument for	8.5, 10.4, 10.6, 10.7	
the formulas for the circumference of a circle;	0.5, 10.4, 10.0, 10.7	
area of a circle; and volume of a cylinder,		
pyramid, and cone. Use dissection arguments,		
Cavalieri's principle, and informal limit		
arguments.		
[G-GMD3] 37. Use volume formulas for	10.4, 10.6, 10.7	
cylinders, pyramids, cones, and spheres to solve	10.4, 10.0, 10.7	
problems.		
38. Determine the relationship between surface	8.6, 10.8	
areas of similar figures and volumes of similar	8.0, 10.8	
figures.		
Visualize relationships between two-dimensiona	and three dimensional	
objects.		
[G-GMD4] 39. Identify the shapes of two-	10.9	
dimensional cross-sections of three-dimensional	10.7	
objects, and identify three-dimensional objects		
generated by rotations of two-dimensional		
objects.		
Modeling With Geometry	<u> </u>	
Apply geometric concepts in modeling situations.		
Apply geometric concepts in modeling situation	13.	

[G-MG1] 40. Use geometric shapes, their	10.1, and used throughout
measures, and their properties to describe objects	Geometry in the Math
(e.g., modeling a tree trunk or a human torso as a	Applications sections at the end
cylinder).	of each chapter.
[G-MG2] 41. Apply concepts of density based	Covered in Common Core
on area and volume in modeling situations (e.g.,	Geometry Supplement Lesson
persons per square mile, British Thermal Units	10.8a
(BTUs) per cubic foot).	
[G-MG3] 42. Apply geometric methods to solve	Used throughout Geometry in
design problems (e.g., designing an object or	the Math Applications sections
structure to satisfy physical constraints or	at the end of each chapter.
minimize cost, working with typographic grid	1
systems based on ratios).	
STATISTICS AND PROBABILITY	1
Conditional Probability and the Rules of Proba	bility
Understand independence and conditional prol	bability and use them to
interpret data. (Link to data from simulations of	r experiments.)
[S-CP3] 43. Understand the conditional	Covered in Common Core
probability of A given B as $P(A \text{ and } B)/P(B)$, and	Geometry Supplement Lessons
interpret independence of A and B as saying that	12.3, 12.4
the conditional probability of A given B is the	
same as the probability of <i>A</i> , and the conditional	
probability of B given A is the same as the	
probability of <i>B</i> .	
[S-CP4] 44. Construct and interpret two-way	Covered in Common Core
frequency tables of data when two categories are	Geometry Supplement Lesson
associated with each object being classified. Use	12.4
5 E	
the two-way table as a sample space to decide if	
the two-way table as a sample space to decide if events are independent and to approximate	
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.	
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.[S-CP5] 45. Recognize and explain the concepts	Covered in Common Core
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.[S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in	Geometry Supplement Lesson
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. 	Geometry Supplement Lesson 12.4
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab 	Geometry Supplement Lesson 12.4
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. 	Geometry Supplement Lesson 12.4 ilities of compound events in a
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of A 	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i>'s outcomes that also 	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i>'s outcomes that also belong to <i>A</i>, and interpret the answer in terms of 	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i>'s outcomes that also belong to <i>A</i>, and interpret the answer in terms of the model. 	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4
 the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i>'s outcomes that also belong to <i>A</i>, and interpret the answer in terms of the model. [S-CP7] 47. Apply the Addition Rule, <i>P</i>(<i>A</i> or <i>B</i>) 	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4 Covered in Common Core
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model. [S-CP7] 47. Apply the Addition Rule, $P(A \text{ or } B)$ = P(A) + P(B) - P(A and B), and interpret the	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4 Covered in Common Core Geometry Supplement Lessons
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model. [S-CP7] 47. Apply the Addition Rule, $P(A \text{ or } B)$ = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model.	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4 Covered in Common Core Geometry Supplement Lessons 12.3, 12.4
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model. [S-CP7] 47. Apply the Addition Rule, $P(A \text{ or } B)$ = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model. [S-CP8] 48. (+) Apply the general Multiplication	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4 Covered in Common Core Geometry Supplement Lessons 12.3, 12.4 Covered in Common Core
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model. [S-CP7] 47. Apply the Addition Rule, <i>P</i> (<i>A</i> or <i>B</i>) = <i>P</i> (<i>A</i>) + <i>P</i> (<i>B</i>) – <i>P</i> (<i>A</i> and <i>B</i>), and interpret the answer in terms of the model. [S-CP8] 48. (+) Apply the general Multiplication Rule in a uniform probability model, <i>P</i> (<i>A</i> and <i>B</i>)	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4 Covered in Common Core Geometry Supplement Lessons 12.3, 12.4 Covered in Common Core Geometry Supplement Lessons
the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. [S-CP5] 45. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Use the rules of probability to compute probab uniform probability model. [S-CP6] 46. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model. [S-CP7] 47. Apply the Addition Rule, $P(A \text{ or } B)$ = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model. [S-CP8] 48. (+) Apply the general Multiplication	Geometry Supplement Lesson 12.4 ilities of compound events in a Covered in Common Core Geometry Supplement Lesson 12.4 Covered in Common Core Geometry Supplement Lessons 12.3, 12.4 Covered in Common Core

[S-CP9] 49. (+) Use permutations and	Covered in Common Core	
combinations to compute probabilities of	Geometry Supplement Lessons	
compound events and solve problems.	12.5, 12.6	
Using Probability to Make Decisions		
Use probability to evaluate outcomes of decisions. (Introductory; apply counting		
rules.)		
[S-MD6] 50. (+) Use probabilities to make fair	Covered in Common Core	
decisions (e.g., drawing by lots, using a random	Geometry Supplement Lesson	
number generator).	12.7	
[S-MD7] 51. (+) Analyze decisions and	Covered in Common Core	
strategies using probability concepts (e.g.,	Geometry Supplement Lesson	
product testing, medical testing, pulling a hockey	12.7	
goalie at the end of a game).		