Cord Bridges to Algebra and Geometry, Learning in Context, 3rd edition correlation to 2010 Alabama Course of Study: Mathematics Grade 8

Content Standard	Cord Bridges Lesson(s)	
The Number System		
Know that there are numbers that are not rational, and approximate them by		
rational numbers.		
[8-NS1] 1. Know that numbers that are not	5.2, 8.5	
rational are called irrational. Understand		
informally that every number has a decimal		
expansion; for rational numbers show that the		
decimal expansion repeats eventually, and		
convert a decimal expansion which repeats		
eventually into a rational number.		
[8-NS2] 2. Use rational approximations of	8.5	
irrational numbers to compare the size of		
irrational numbers, locate them approximately on		
a number line diagram, and estimate the value of		
expressions.		
Expressions and Equations		
Work with radicals and integer exponents.	1	
[8-EE1] 3. Know and apply the properties of	8.1, 8.2	
integer exponents to generate equivalent		
numerical expressions.		
[8-EE2] 4. Use square root and cube root	8.5	
symbols to represent solutions to equations of		
the form $x^2 = p$ and $x^3 = p$, where p is a positive		
rational number. Evaluate square roots of small		
perfect squares and cube roots of small perfect		
cubes. Know that $\sqrt{2}$ is irrational.		
[8-EE3] 5. Use numbers expressed in the form of	8.3	
a single digit times an integer power of 10 to		
estimate very large or very small quantities, and		
to express how many times as much one is than		
the other.		

[8-EE4] 6. Perform operations with numbers	8.3
expressed in scientific notation, including	0.5
problems where both decimal and scientific	
notation are used. Use scientific notation and	
choose units of appropriate size for	
measurements of very large or very small	
quantities (e.g., use millimeters per year for	
seafloor spreading). Interpret scientific notation	
that has been generated by technology.	
Understand the connections among proportional rel	ationships, lines, and linear
equations.	attonsmps, mes, and mear
[8-EE5] 7. Graph proportional relationships,	9.2, 9.3, 9.4
interpreting the unit rate as the slope of the	<i>y</i> .2, <i>y</i> .3, <i>y</i> .1
graph. Compare two different proportional	
relationships represented in different ways.	
[8-EE6] 8. Use similar triangles to explain why	9.3, 9.4
the slope m is the same between any two distinct	7.3, 7.4
points on a non-vertical line in the coordinate	
plane; derive the equation $y = mx$ for a line	
through the origin and the equation $y = mx$ for a line $mx + b$	
for a line intercepting the vertical axis at b .	
Analyze and solve linear equations and pairs of sime	ultaneous linear equations
[8-EE7a] 9. Solve linear equations in one	4.1, 4.2, 4.3, 4.5
variable.	1.1, 1.2, 1.3, 1.3
a. Give examples of linear equations in one	
variable with one solution, infinitely many	
solutions, or no solutions. Show which of these	
possibilities is the case by successively	
transforming the given equation into simpler	
forms until an equivalent equation of the form	
x = a, a = a, or a = b results (where a and b are	
x = u, u = u, or u = v results (where u and v are different numbers).	
b. Solve linear equations with rational number	
coefficients, including equations what rational number	
require expanding expressions, using the	
distributive property and collecting like terms.	
aistributive property and concerning like terms.	

[8-EE8a] 10. Analyze and solve pairs of	9.5
simultaneous linear equations.	
a. Understand that solutions to a system of two	
linear equations in two variables correspond to	
points of intersections of their graphs because	
points of intersection satisfy both equations	
simultaneously.	
b. Solve systems of two linear equations in two	
variables algebraically, and estimate solutions by	
graphing the equations. Solve simple cases by	
inspection.	
c. Solve real-world and mathematical problems	
leading to two linear equations in two variables.	
Functions	
Define, evaluate, and compare functions.	
[8-F1] 11. Understand that a function is a rule	9.7
that assigns to each input exactly one output. The	5.1
graph of a function is the set of ordered pairs	
consisting of an input and the corresponding	
output. (Function notation is not required in	
Grade 8.)	- -
[8-F2] 12. Compare properties of two functions,	9.7
each represented in a different way	
(algebraically, graphically, numerically in tables,	
or by verbal descriptions).	
[8-F3] 13. Interpret the equation $y = mx + b$ as	9.7
defining a linear function whose graph is a	
straight line; give examples of functions that are	
not linear.	
Use functions to model relationships between quanti	ties.
[8-F4] 14. Construct a function to model a linear	9.2, 9.3, 9.4
relationship between two quantities. Determine	
the rate of change and initial value of the	
function from a description of a relationship or	
from two (x,y) values, including reading these	
from a table or from a graph. Interpret the rate of	
change and initial value of linear function in	
terms of the situation it models and in terms of	
its graph or a table of values.	
[8-F5] 15. Describe qualitatively the functional	9.7
relationship between two quantities by analyzing	~••
a graph (e.g., where the function is increasing or	
decreasing, linear or nonlinear). Sketch a graph	
that exhibits the qualitative features of a function	
-	
that has been described verbally. Geometry	

Understand congruence and similarity using physica	al models, transparencies, or	
geometry software		
[8-G1a] 16. Verify experimentally the properties	10.7, 10.8, 10.9	
of rotations, reflections, and translations.		
a. Lines are taken to lines, and line segments are		
taken to line segments of the same length.		
b. Angles are taken to angles of the same		
measure.		
c. Parallel lines are taken to parallel lines.		
[8-G2] 17. Understand that a two-dimensional	10.6, 10.7, 10.8, 10.9	
figure is congruent to another if the second can		
be obtained from the first by a sequence of		
rotations, reflections, and translations; given two		
congruent figures, describe a sequence that		
exhibits the congruence between them.	10.7 10.9 10.0 11.2	
[8-G3] 18. Describe the effect of dilations,	10.7, 10.8, 10.9, 11.2	
translations, rotations, and reflections on two- dimensional figures using coordinates.		
[8-G4] 19. Understand that a two-dimensional	11.1, 11.2	
figure is similar to another if the second can be	11.1, 11.2	
obtained from the first by a sequence of		
rotations, reflections, translations, and dilations;		
given two similar two-dimensional figures,		
describe a sequence that exhibits the similarity		
between them.		
[8-G5] 20. Use informal arguments to establish	10.2, 10.3, 10.4, 11.1	
facts about the angle sum and exterior angle of		
triangles, about the angles created when parallel		
lines are cut by a transversal, and the angle-angle		
criterion for similarity of triangles.		
Understand and apply the Pythagorean Theorem.		
[8-G6] 21. Explain a proof of the Pythagorean	8.6	
Theorem and its converse.	9.6	
[8-G7] 22. Apply the Pythagorean Theorem to	8.6	
determine unknown side lengths in right		
triangles in real-world and mathematical problems in two and three dimensions.		
[8-G8] 23. Apply the Pythagorean Theorem to	8.6	
find the distance between two points in a		
coordinate system.		
Solve real-world and mathematical problems involv	ing volume of cylinders, cones, and	
spheres.		
[8-G9] 24. Know the formulas for the volumes	124, 12.5, Ch 12 Math Lab	
of cones, cylinders, and spheres, and use them to	Activity 1	
solve real-world and mathematical problems		
Statistics and Probability		
Investigate patterns of association in bivariate data.		

[0 CD11 25 Construction 1 intermediated and the	Ch 1 Math Lab Astistics 2
[8-SP1] 25. Construct and interpret scatter plots	Ch 1 Math Lab Activity 3
for bivariate measurement data to investigate	
patterns of association between two quantities.	
Describe patterns such as clustering, outliers,	
positive or negative association, linear	
association, and nonlinear association.	
[8-SP2] 26. Know that straight lines are widely	Ch 1 Math Lab Activity 3
used to model relationships between two	
quantitative variables. For scatter plots that	
suggest a linear association, informally fit a	
straight line, and informally assess the model fit	
by judging the closeness of the data points to the	
line.	
[8-SP3] 27. Use the equation of a linear model to	Ch 1 Math Lab Activity 3, 9.2,
solve problems in the context of bivariate	9.3, 9.4
measurement data, interpreting the slope and	
intercept.	
[8-SP4] 28. Understand that patterns of	2.2
association can also be seen in bivariate	
categorical data by displaying frequencies and	
relative frequencies in a two-way table.	
Construct and interpret a two-way table	
summarizing data on two categorical variables	
collected from the same subjects. Use relative	
frequencies calculated for rows or columns to	
describe possible association between the two	
variables.	